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This note is primarily concerned with the generation of spatially growing Tollmien- 
Schlichting waves by the interaction of very long-wavelength free-stream disturb- 
ances with a discontinuity in the curvature of a bounding surface (whose slope may 
or may not be continuous). The theory is combined with a numerical solution of the 
local Orr-Sommerfeld equation, and the result is used to predict the Tollmien- 
Schlichting amplitude in a relevant experiment carried out by Leehey & Shapiro 
(1980). The calculated results are in satisfactory agreement with their observations. 

1. Introduction 
Goldstein (1985, hereinafter referred to as I) showed that small but sudden changes 

in surface geometry can produce strong coupling between long (effectively infinite)- 
wavelength free-stream disturbances and very short-wavelength boundary-layer 
instability waves. The analysis was compared with the Leehey & Shapiro (1980) 
receptivity experiment and was found to provide a possible explanation for the very 
large (i.e. order-one) coupling coefficient that was observed there. The comparison 
was, for simplicity, carried out by calibrating an existing calculation of the steady 
flow over a wall with a sudden slope change with Shapiro’s (1977) static pressure 
measurements. But the experimental geometry had only surface-curvature discon- 
tinuity with no discontinuity in wall slope. 

This note extends the calculation of I to these higher-order discontinuities and 
shows that the result can still predict the order-one coupling coefficient observed by 
Leehey & Shapiro (1980). The comparison now proceeds directly from the prescribed 
surface geometry without artificial calibration with the measured pressure, which we 
feel is important because it demonstrates how an apparently smooth surface can serve 
as an initiation site for Tollmien-Schlichting waves. We also give an improved 
estimate of the instability-wave amplification between the source region and 
measuring station. This is done by solving an On4ommerfeld equation with numeri- 
cally calculated mean-velocity profiles. 

2. Analysis 
As in I, we begin by considering the steady unseparated flow over a relatively thin, 

two-dimensional body in an otherwise uniform stream of density po and ve!ocity U,. 
We suppose that there is a small region of rapid geometry change located a distance 
1, say, downstream from the leading edge, which we refer to as the interaction region. 
The Reynolds number R = U,*,l/v, where U,*, is the velocity at the edge of the 
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boundary layer at the interaction region and v is the kinematic viscosity, is assumed 
to be large, and we require that the ratio lJ1, where 1, is the distance to the lower 
branch of the neutral stability curve, remain O(1) as R++m. The length, time, 
velocity and pressure scales are taken to be 1, l/U,*,, U,*, and po U,*oe, respectively. 

We again suppose that the interaction-region wall geometry varies on the 
streamwise lengthscale of a Tollmien-Schlichting wave, which turns out to be O(e31) 
where 

E = R-t. (2.1) 

The steady flow then exhibits the usual triple-deck structure in this region 
(Stewartson 1969; Messiter 1970) (see figure 3 of I), and the wall geometry can be 
described by an equation of the form 

Y = hF( X) , (2.2) 

where x = x/e3, (2.3) 

Y = y p .  (2.4) 

x and y denote the local non-dimensional streamwise and transverse coordinates at  
the position of the interacting region; F is an O( 1) function of the indicated argument; 
and h is a real constant. 

We suppose that 
F+O a s X + + m  

and F - a0(-X)I ( r  2 1) as X+-oo, (2.6) 

where a. is an O(1) constant. This local geometry matches onto an outer body-scale 
geometry that behaves like 

y - - x ) ~  as x+O-, (2.7) 

which shows that the body has a thickness ratio c of O ( E ~ - ~ % ) .  It will exhibit a sudden 
change in wall slope if r = 1 ; and a sudden change in surface curvature, but no change 
in wall slope, if r > 1. Since the flow cannot remain attached for values of e5--3rh 
exceeding 0(1), h can only be 0(1) if 1 < r < 8. Otherwise we must require 

h = O(P-5). (2.8) 

The r = 1 case, corresponding to a sudden change in wall slope, wm analysed by 
Stewartson (1970) and was the one considered in I. However, Stewartson’s (1970) 
steady -flow triple-deck analysis, and, consequently, the linearized unsteady-flow 
analysis of I, remain valid for the more general case considered herein. The general 
theory in Stewartson (1970) is nonlinear (though the actual analysis was only carried 
for the linear case) and can predict flow reversal (i.e. separation) when h is O(1). It 
would be interesting to analyse the steady flow with r in the range 1 < r < 8 to see 
if separation is also predicted in this case, but this will not be attempted here. 

Stewartson (1970) only worked out the solution for the linear case where h Q 1, 
which, however, is the only one that is appropriate for the relatively smooth wall 
with r > 8. This makes the steady flow somewhat uninteresting, but, as we shall see 
below, the unsteady flow becomes even more interesting. 

The Leehey & Shapiro (1980) flat plate consisted of a 6 : 1 semi-ellipse transitioning 
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x = - l  

FIGURE 1. Prescribed body geometry. 

rather abruptly into the flat-plate section as shown in figure 1. The transverse 
coordinate ys of its upper surface is given by 

u((1 -zB)t- 1) for - 1 < x < 0, 

for x > 0, (2.9) 
Ys = {o 

where u( =t) is the thickness ratio of the semi-ellipse. The function F and the constant 
h in (2.2) can therefore be taken as 

-?jX2 forX<O,  

0 for X > 0, 
F = {  (2.10) 

and h = CU, (2.11) 

respectively. 
The Tollmien-Schlichting wave generated by the interaction of a small-amplitude 

free-stream velocity fluctuation with this geometry is still given by (4.9) of I, modified 
as described in 55.1 of I, i.e. by 

uTs = AhFA &) U’ (5) exp f [ Joz K(X) dx-flt], (2.12) 

where uTs is the streamwise component of the Tollmien-Schlichting wave velocity 
normalized by the inviscid streamwise velocity fluctuation just outside the boundary 
layer at the interaction region, h is the wall-shear stress just upstream of the 
interaction region, So = E ~ S ,  S is the Strouhal number defined in I, A is given by (4.7) 
in I, U is the local mean-velocity profile, and F(K), the Fourier transform of the wall 
shape function, is now given by 

(2.13) 

rather than by (5.1) of I and is still to be evaluated at  x = 0. The quantity AhFA 
is commonly referred to as the ‘coupling coefficient’. Equation (2.11) shows that it 
is O(su), in a formal asymptotic sense. This makes the coupling coefficient of smaller 
asymptotic order than it was in I, but the viscous parameter c cannot, in reality, be 
very small if the boundary layer is to remain laminar, and it turns out that the smaller 
order is actually compensated for by numerically larger values of F. 

3. Numerical results 
The flat plate in the Leehey & Shapiro (1980) experiment was presumably at zero 

angle of attack and had a total length L of 168 cm. Also, 1 = 3.81 cm, U ,  = 29 m s-l, 
and the frequency parameter o v / P ,  (where w is the angular frequency) was equal 



522 

to 5.6 x (Note that, in addition to the decimal point being misplaced in the text, 
an incorrect value of 2.1 cm was used for 1 in ( 5 )  of I.) 

The inviscid upper-surface velocity was Calculated for us by Dr Eric McFarland 
(of the Lewis Research Center) using his panel-method code. He was limited to an 
L/1 of about 11,  for reasons of accuracy, while the experimental value was about 44. 
However, the shorter plate length probably had little effect on the calculated result 
in the streamwise region of interest here, since it was found to agree fairly well with 
a composite thin-airfoil solution for a semi-infinite plate. The panel-method 
calculation showed that U,*,/U, = 1.087. This value, the previously given numerical 
values, and an assumed value of v = 15 x m2 s-l gives E = 0.244 and So = 0.226. 

The laminar boundary-layer flow was determined from a finite-difference scheme. 
Transformed variables, analogous to those described in Schlichting (1979, p. 188), 
were used, and the governing equations are his (9.64-9.66) with his N = 1. They were 
discretized with central-difference and two-step-backward approximations for 
derivatives in the normal and streamwise directions, respectively, and the trapezoidal 
rule was used for the integral. The resulting finite-difference approximation was then 
solved by iteration at each streamwise station. Each iteration required the solution 
of a tridiagonal matrix equation and the evaluation of one integral. 

The numerical mean-flow calculation suggests that A = 0.122, which is about a 
third of the Blasius boundary-layer value of 0.332. Solving (4.5) of I (which is to be 
evaluated a t  z = 0) and using (4.4) of I, we find that I K ~  is approximately equal to 
0.140, while figure 5 of I shows that 1111 x 1.13. The coupling coefficient is therefore 
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IAhFAl x 0.814 (3.1) 

in this experiment, which is only about one-fourth of the estimate given in I. But 
we shall now show that the adverse pressure gradient produced a net growth of the 
instability wave between the interaction region and the measuring station, rather 
than a net decay as assumed in I. 

We used the numerically computed mean-velocity profiles in the Orr-Sommerfeld 
equation, which was solved numerically at each streamwise location by using the 
compound-matrix method described in Drazin & Reid (1981). The integration was 
started in the free stream by using the appropriate asymptotic solutions, and 
integrated towards the wall using a fourth-order, Adam-Bashforth predictor- 
corrector method. The procedure was iterated by varying the wavenumber until the 
wall boundary condition was satisfied to a preset tolerance. The final wavenumber 
is the desired eigenvalue. 

Since the coupling coefficient was determined from a triple-deck analysis, the 
reader might feel that a triple-deck analysis, such as that of Smith (1979), should 
also be used to solve the Orr-Sommerfeld problem. But the wavenumber expansion 
would then have to be carried to fourth order just to determine the instability-wave 
amplitude to first order, while the coupling coefficient is determined to the same order 
of accuracy by its lowest-order term. It therefore turns out to be much easier to solve 
the Orr-Sommerfeld equation numerically. While the asymptotic approach might be 
more appealing from a pedagogical point of view, it is no more valid than the present 
scheme, since the formal asymptotic orders of these two approaches are exactly the 
same. 

The imaginary part of the eigenvalue was integrated to yield the growth/damping 
factor shown in figure 2. The corresponding result for a Blasius boundary layer is also 
shown. The arrow indicates the location, z = 3.5, of the Blasius lower-branch neutral 
curve. It corresponds to a (Blasius) displacement-thickness Reynolds number 
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FIGURE 2. Tollmien-Sohliohting growth/deoay factor. 

Re, = 1.721(xR)k x 991. By comparison, Re, = 467 a t  the interaction region. It 
follows from these results and (2.12) and (3.1) that 

at the position corresponding to the Blasius lower branch, where the numerical value 
for I U'lmax x 0.309 incorporates the fact that the interaction-region free-stream 
velocity, and consequently the acoustic forcing, is 1.087 times the incident value. 
Equation (3.2) indicates that the maximum streamwise velocity jluctwltion of the 
Tollmien-Schlichting wave at the position of the Blasius boundary-layer lower branch is 
approximately two-thirds of the free-stream velocity $uctwltion. It is worth noting that 
the latter was always less than 3 mm s-l in Shapiro's (1977) experiment. 

4. Comparison with the Leehey-Shapiro measurements 
Shapiro (1977) measured the total velocity fluctuation in the boundary layer which, 

as pointed out by Thomas t Lekoudis (1978), probably consisted of the sum of a 
Stokes shear wave, say A,(y) cos-wt, and a Tollmien-Schlichting wave, 
AT( y) cos (kx--wt + 9) .  As is relatively independent of the streamwise coordinate, and 
the slow streamwise growth or decay of the Tollmien- Schlichting wave is incorporated 
in AT. The measured r.m.s. velocity fluctuation amplitude should therefore be of the 
form 

(4.1) A@) = +[A: +A$ + 2As AT cos ( k ~  + #)I+. 
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As pointed out by Thomas & Lekoudis (1978), figure 28 in Shapiro (1977) (figure 5 
in Leehey & Shapiro 1980), which is a plot of 

A 
In - = 4 In [ 1 + 2b cos (kz+ 9) + b2], (4 .2)  

A0 

where b = b ( y )  = A,/As, clearly shows the streamwise oscillation of the Tollmien- 
Schlichting wavenumber predicted by (4 .2 ) .  

Since the Tollmien-Schlichting wave ultimately exhibits downstream growth (see 
figure 2 ) ,  there must be a streamwise location where 161 = 1 for each transverse 
measuring station. The argument of the logarithm can then go to zero in (4 .2) ,  causing 
lnA/Ao to become infinite. Shapiro’s (1977) figure 28 shows a large negative peak 
a t  Re, x 990 - indicating that the Tollmien-Schlichting wave and the Stokes shear 
wave are of equal magnitude but 180’ out of phase at that streamwise location and 
elevation. The former fortuitously coincides with the lower-branch position for the 
Blasius boundary layer, as calculated by ust (Re, = 991). The Stokes shear wave 
takes on its free-stream value at  the peak Tollmien-Schlichting wave amplitude 
(which occurs at  about one momentum thickness from the wall). The prediction of 
(3 .2 ) ,  therefore, seems to be about 33 yo lower than the observed value. 

There are, however, at  least two neglected effects that might improve the 
comparison. First, Shapiro’s (1977) figure 28 shows that every second negative peak 
is clipped - indicating that a second, slowly decaying mode with twice the wavelength 
may be present in his experiment and that the two modes are in phase at Re, = 990. 
The peak amplitude of the primary mode must therefore be less than unity but 
probably not as low as two-thirds. 

Secondly, our numerical stability calculation does not account for weakly non- 
parallel mean-flow effects. The latter will always increase the instability-wave growth 
rate both in the vicinity of and everywhere upstream of the lower branch of the 
neutral stability curve (Saric & Nayfeh 1977; Smith 1979). These effects could be 
fairly significant at the relatively low Reynolds numbers involved here, and further- 
more, Saric & Nayfeh’s (1977) results suggest that they will be more pronounced 
in the presence of adverse pressure gradients. 

The authors would like to thank Dr Eric McFarland for using his panel-method 
code to calculate the potential flow about Shapiro’s plate, and Dr S. J. Cowley for 
his helpful comments. 
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